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An algorithm is shown for the calculation of the exact partition
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The partition functions to the size 2x 2% 2x 1 are given. from them,
zero-point distribution of the partition functions and the strong
coupling expansion of the free energy to the order of u?? are shown.
‘€' 1994 Academic Press, Inc.

I INTRODUCTION

The analytical calculation of the partition function of
fattice gauge theory in finite size systems gives much infor-
mation about the structure of the theory. For example, the
zero-point distribution of the partition function in the com-
plex coupling-constant plane gives information about the
phase transition in the theory [I, 2]. The section of the
distribution to the real axis shows the location of phase
transition points and the order of the transition. In another
cxample, analytical calculation of the partition functions of
size N+ V+Z4+T<L lor given L (X, Y, 2, T is the
sparcc/time dength of the Tinite system) leads the strong
coupling expansion of the free cnergy to »'' ') using the
new cluster expansion [3]. For the extrapolation of the
approximations Lo inlinite size, calculutions for large
systems are indispensable.

Calculation of the partition function [for Z(2)
lattice gauge theory is equivalent to counting all closed
surfaces in the lattice space-time Vy=Xx ¥ x Zx T. There
are 2(3.\')’7_T+-.\'}'Z+,\’}’T+‘\'ZT+ YZT) C]OSCd SurfaCCS il'l Vq-
Efficient algorithms are desired for counting the closed
surfaces. In this paper, we show an algorithm that costs
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Using this algorithm we have calculated the exact partition
function for systems with X+ Y+ Z -+ T < 7.

In Section 11, we describe the algorithm; in Section III,
zero-point distribution of the partition functions is shown;
in Section 1V, the strong expansion for the four-dimensional
Z(2) lattice gauge theory to «** is given. Section V is
devoted to conclusion and discussion.

1. FORMULATION

The partition function of the four-dimensional isotropic
Z{2} lattice gauge theory with standard action [4] is

Z=Y exp (% ﬁo,,)

(o}

(2.1)

= (]_1 cosh ﬁ) zZ*,
n
where

z*=3 []0 +uc,).

lot}b p

{2.2)

Here, o, in Eq. (2.1} is the product of four link variables &,
around a plaquette p,

(2.3)

Gp= ﬂ aps
i

eap
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B is a coupling constant, and # = tanh . The summation in
Eqgs. (2.1}-(2.2) is the average for link variables ¢,,

Test L4 e

{o} ai=%1l, e2=x1

(2.4)

Equation (2.1} works on a four-dimensional Euclidean
lattice of size ¥V, = ¥, x T with free boundary condition.
Z* in Eq. (2.2) can be rewritten as

Z* =singlet part of{ 11 0+ uap)}, (2.5)
pely
= Y ultsI, (2.6)

allclosed surfaces Sin Iy

where || S| is the number of plaquettes which form closed
surface S, A closed surface is a set of plaquettes and every
link is shared by even number of the plaquettes. Because
" =g, (= Z(2) doublet), ¢5**" = 1 (= Z(2) singlet) and
1Y 410, =0, 3%, _ 1 =1, for arbitrary link /.

First step. Definitions of potential and kinetic terms. We
decompose these plaquettes in V', to a direct sum of sets of
plaquettes P(0}) (set of space-like plaguettes at r =0}, P(1),
P(2), ., P(T), and P{0, 1) (the set of time-like plaquettes
between r=0 and r=1), P(1,2), P(2,3),.,P(T—1,T).
We define @ and K as

o(n= [] (1+us,), (2.7}
rePi)
Kit,i+ )= ] (1+us,) (2.8)
rePiLi+1)

We call @(¢) a potential term and K(r, t+ 1) a kinetic
term,
Then Z* in Eq. (2.5) is rewritten as

Z* = singlet part of {|: I1

0L rg(T—1)

®(1) K(1, 1 + 1)] cD(T]}.
(2.9)

Second step. Introduction of loop representations.
Integrate all of the time-like link variables in Eq. (2.8).
Consider an arbitrary, time-like link /. If odd number of
plaquettes share this link /, this term will vanish after the
integration. Then non-vanishing terms after the integration
consist of contributions from closed loeps as shown in
Fig. 1. A closed loop L, is a set of links and every site is

" shared by even number of the links. Let L be set of closed
loops drown in V5. Thus we obtain

K(t,t+1)=3% a"™L)e" L) u'N 40,
{Lic L}

(2.10)

FIG. 1. Integration of time-like links yields identical twins of closed
loops at time =t and 1 + 1. {Left) Before integration. A diagram made of 12
plaquettes is shown. (Right) After the integration. Black {at ¢t + 1) and gray
(at ¢} loop at the identical twins whose length is 12.

where ||L;| is the length of L,. Suffix 7 or 7 4 1 is marked for
making it clear that the loop variable exists at f or 1 + 1. The
loop variable o!(L .} is the product of the space-like tink
variable along L;,

o(L)=T] o. (2.11)

fe il

The last term O in Eq. {(2.10) represents terms which will
vanish after the integration of the time-like link variables.

Now consider the function @®{¢); the product of an
arbitrary set of plaquette variables makes a closed loop. But
many different sets of plaquettes can make the same closed
loop. So, we first add the contributions from every set of
plaqueties whose boundary is a closed loop L;; then we add
the contributions from the L/s. That is,

(1) =3 a“U(L,) @(i),

L

p(i) = Y

{SsuchthatdsS = L;}

(2.12)

TR (2.13)

where § is the set of plaquettes in V', and || S| is the number
of the plaquettes in 5.

In Appendix A, it is shown that there is a one-to-one
correspondence between a closed loop and an integer (thus
we write a(L,) as ¢(f)) which has the following property:

(2.14)
(2.15)

o(i)-o(j)=al{i*j),

ali)=1, ifand only if i=0

Star product (*) in the Eq. (2.14) represents the “exciusive
OR” in the bit-operation of integers.

Third step. Loop representation of the partition function.
Consider the fate of a closed loop at a time ¢ after the
integrations of space-like link variables. Variable &'
appears in three places, K(r — 1, 1), @(1), and K(1, ¢ + 1). Let
us consider a given loop i in K(r—1, 1), a given loop j in
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Kiz, t+1), and all the loops in @{1). This part of Eq. (2.9)
looks like

o) (Z (k) w(i)) ()
k

S ———"

e
K(r—1.1) Dt} K{Lt+ 1}

=Y oliyoixjek)---. (2.16)
k

After integrations of the space-like link variables at time =¢,
only singlet term i# j+x k=0, ie, k=17xj, will survive.
Thus Eq. (2.16) becomes equal to
plisf)e 40, (2.17)
where the last term O represents terms which will vanish

after the integration of the space-like link variables. Thus
the partition function Z* is written as

7* = Z (p(il) ul\l-(il)llqo(l'] * fz) Ul

[N 7.

el ip) u N ), (2.18)
Methods to calculate |L(i)|| and ¢(i/) are shown in
Appendices B and C,
Let us introduce matrix representation for ¢, K,

0., =elix]), (2.19)
K, j=ulttlg, (2.20)

then we obtain
Z*= (K @K - @)y, (2.21)

The final step. Diagonalize the potential term. There are
2% = closed loops in V5, where N,=3XYZ+ XY+
YZ + ZX is the number of plaquettes in V', and Vy,=XYZ
is the volume. Therefore the /,’s in Eq. (2.18) run from zero
to 2(M~ "3 — 1. Then T x 4**~ *2! steps would be needed to
calculate the partition function in the equation (2.18) or
{(2.21). This is because the potential term is not diagonal for
closed loop representation. To diagonalize the matrix ¢, we
introduce a fourier transform as
F-u,-E (_1)”"1”,

L

(2.22)

where dot product ( » ) represents “AND” in bit-operation
of integers, and double fence (|| --- ||) is “bit-counter™ that
counts the number of non-zero bits,

lal=Ya, for a=Ya,2" (a,=0o0rl). (2.23)
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Note that the fourier matrix is order 2 {own inversion),

1

~FF=1 2.24
NFF , (2.24)

where normalization factor N =2 =" is the number of
the closed loops. As shown in Appendix D, the fourier
transformed potential @ is diagonal,

(ﬁi‘jE (F(PF_I)U
=¢;9, (2.25)
where

@, =(Fop),

=Y (= 1)1l (k). (2.26)
k

Thus we obtain the final expression for the partition
function Z*,

Z* = (@KF ~'GFKF~'GFKF~" .- F~'$FK@)o,

1 ~ ~ ~
=NTD (@KFGFKFQFKF --- FoFKp)y,. (227)
In the above, non-diagonal matrices ¢ at far-left and far-

right in the parenthesis is harmless because their left or right
tndex is fixed to zero. The only remaining non-diagonal

TABLE
Finite Systems We Have Calculated

L T X Y z
3 ¢ 1 1 1
4 2 i 1
1 1 1 1
5 0 3 1 1
0 2 1
i 1 1 1
6 0 2 2 2
0 3 2 1
0 4 1 1
1 3 1 1
2 2 1 1
7 0 5 1 1
0 4 2 1
0 3 3 1
0 3 2 2
1 4 1 1
2 3 1 1
2 2 2 1
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TABLE II

Coeflicients of the Partition Function of ¥, =2x2x2x1,
where Z* =Y, a.u'

i a; i a; i a;

0 1 40 3658414290 80 11920348335
2 0 42 8903009272 82 2637300304
4 0 44 20811640692 84 493591960
6 52 46 46508648040 86 72601968
8 0 48 98842022652 88 8294196
10 252 50 198489897816 90 721736
12 1394 52 373906469136 92 41004
14 1548 54 655166465536 94 1128
16 12045 56 1057602913950 96 10
18 35064 58 1555921141776

X 95592 60 2062894003316

22 358608 62 2437561122960

24 1015206 64 2538774701679

26 3107592 66 2305843274872

28 9330468 68 1807554017112

30 26517896 70 1211287012500

32 75467982 72 687883487670

34 207554664 74 328512456876

36 556546328 76 131083824474

38 1450827768 78 43467741196

matrix is the fourier matrix F. Fortunately, it needs only
(N, —V;) 2%~ ") steps, instead of 4%~ ¥ steps, to per-
form fourier transformation by virtue of the fast Fourier
transform algorithm. This will be discussed in Appendix D.
Thus T(N,— ¥;) 2™~ steps are needed to calculate the
partition function.

Before closing this section, we write here the explicit form
of the partition function for T=1 and T=2,

(Koo for T=1,

ZXr=<{1 .
K]((:DKFQDFKm)O.O for

T=2 (228)

Using this algorithm, we have calculated exact partition
function for systems with X+ Y+ Z+ T<7 (see Table I).
Exact partition function of 2 x 2 x 2 x | is shown in Table 1L
CPU time for calculating the partition function was several
tens minute using FACOM M780.

IIl. ZERO-POINT DISTRIBUTION OF Z*

From self-duality and data of Monte-Carlo simulations,
[5] it has been confirmed that the first-order phase transi-
tion occur at the self-dual point, B pua=In(1 +ﬁ)§
04407, u, qua = \/i —1=04142. Zero-point distribution
of the partition function in #, f*, u, and ¥* are shown in
Fig. 2. The suffix * denotes dual. For the {inite systems with
the free boundary condition that we have used, self-duality
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is not exact. The distributions in 2 x 2 x 2 x 1 are inclined so
that the section for the real axis is §,=0.6 and p*=0.3. 3,
and 8% are far from the self-dual point §_ .. and §,.# B%.
It is expected that in a larger system #, and 8 come near
B etiqun- Furthermore, global distributions are interesting in
studying of the analytical feature of Z. Partition functions in
larger systems are requested.

IV. NEW CLUSTER EXPANSION AND STRONG
COUPLING EXPANSION FOR THE FREE ENERGY

Using the partition functions of the finite systems with
X+ Y+ Z+ T< 7 we find the new cluster expansion [3] of
thermodynamical functions. This expansion is one of the
cluster expansions whose expansion parameter is in space-
time. As the zeroth-order approximation, the leading term
in the conventional strong coupling expansion is taken. The
Lth-order term contains all the effects of the correlation
among the plaquette variables at the L lattice spacing. In
Fig. 3 the new cluster expansion of the internal energy to
L=17is shown [6]. The jump in the internal energy at
B setidua 15 shown in Fig. 3.

Performing Taylor expansion of the thermodynamical
function with respect to f§ (or #) in the midst of the algo-
rithm of the new cluster expansion leads the strong coupling
seriecs of the thermodynamical function to 4L —4. We
obtain the strong coupling expansion of the free energy

f=1lim —logZ
Vy— oo 4
=6logcosh §

+ 425 + 36010 4 2u'? + 468y — 81yt
+ 7377 %uls —2070u%° + 132,204u%

— 45,7814 + O(u), (4.1)

where coefficients to #** coincide with Wilson’s results [7].
(The coefficient of u** term is newly obtained.)

Y. CONCLUSION AND DISCUSSION

In this paper an algorithm for the calculation of the parti-
tion function of Z(2) lattice gauge theory in four dimensions
has been shown. Using this algorithm, the partition
functions for the system with X+ Y+ Z+ T< 7 has been
computed. Zero-point distribution of the partition function
has been shown. Furthermore, the cluster expansion of
some thermodynamical functions have been calculated.
Especially the strong coupling expansion of the free energy
to u** has been estimated.
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FIG. 2. Distribution of zere-point of partition function of ¥, =2x2 x2 x| in {a) coupling constant §-plane, (b) dual coupling constant §*-plane,

(¢) « =tanh(#) plane, and (d) sinh(2f) plane.
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FIG. 3. The new cluster expansion of internal energy £ = 1/6 (df/df)
is plotted as a function of £. The solid line, dotted line, dashed line, and
dot-dashed line denote the energy for L=4, 5, 6, and 7, respectively.

Important points of our algorithm are

(1) we have introduced closed-loop representation that
is expressed by integers,

{2) the product of two closed Z(2)-loops is expressed by
the “exclusive OR” of integers that represent these loops,

(3) the non-diagonal potential term is diagonalized by
the Fourier transformation,

{4) the fast fourier algorithm is used.

Our method, however, needs large memory space to store
the state vectors, (@), or (Ke),, or (FKg),, or -+, in
Eq. (2.27). For example, calculation of the partition func-
tion for VV,=2x2x2x1 needs 11 Mb. This is the weak
point of this algorithm. This point must be overcome to
calculate the partition function for larger systems.
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APPENDIX A: CLOSED LOOPS IN
THREE-DIMENSIONAL LATTICE SYSTEM

Let P be a set of the plaquettes in V5,

P={po,p1s s Pis s P, 1 1 (A1)

Let P be a subset of P. There exist 2™ subsets. A subset P
defines an integer as

i= Y a2, (A.2)
Ok SN, — 1
where
0 for p.¢P,
= A
e {1 for p,eP. (A.3)

On the other hand, integer  defines a subset P; and a closed
loop a(i):

=] o, for P,#null set,

#ehi A.
=1 for P,=null set. (A4)

ali)

Consider the product of two closed loops a(f) and a{j).
Because of (5,)” = 1 we obtain

a(i) au)=(ﬂ a,,)(n cp)

pEP; pe P

= [l a,.

pelPiovPi— Pin Py

(A.5)

In the above, the set in the second line is the set defined by
the integer i * j (exclusive OR of 7 and j),

PP, —PinP =P, . (A6}
Thus we obtain a rule for loop product,
a(iya(j)=o(i* j) (A7)

A closed surface is the special case of closed loop, ie., a
vanishing loop,

gimy=1. {AR)
We know that the number of closed surfaces is 2%3,
Therefore we number the solutions of Eq, (A.8) as
0gig2V 1.

alm;)=1, (A9

THEOREM 1. For any closed loop o(i), 2% plaquette
configurations describe the same closed loop. Thus the
number of the closed loops is 2N =¥,

S81/11441-12
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Proof, Let j=i+m,, where m, is a solution in
Eq. (A.9). Then j represents the same closed loop as 7; there-
fore ol j)=oli * m )= o(i) o{m,) = o{i). The reverse is the
following. If g{i} = a(j), then l = (i) 6(j) = a(i * j). There-
fore i » j is a solution of Eq. {(A.9) and 3 an m, such that
my=i* jThusj=1%m,. QED.

To achieve one-to-ong correspondence between a closed
loop and an integer, we restrict the set of plaquette,
ﬁE{pospl»“"pr—Vj—l}- (A.10)
P is chosen so that any subset of P does not represents
closed surface except for the null set. An example of P are
“key boxes” shown in Fig. 4. In the “key boxes” shown in
Fig. 4. In the “key boxes” all the plaquettes on the z = const
planes, except for z = 0, are removed. The set P inherits the
properties of (A.2)-{A.7). Equation {A.8) is satisfied only by
=0, by the definition

=1 for
alm) { #1 for

m=0,

I<mg2We =", (A1)
THEOREM 2. In B, closed loops correspond one-to-one fo

plaguette configurations.

Proof. The number of the subset of P is the same as
the number of closed loops 2%='3), And if i#j
(0<i,j<2% =" 1), then 0<i+ j<2™ "*—1 Thus by
the above equation, oc(i)o(f)=a(i*j)#1; therefore
a(i)#a(j) QED.

APPENDIX B: CALCULATIONS OF || L, ||

We chose the system of “key boxes” shown in Fig. 4 as P.
We assign Z-bit integers £, . (0<x<X, l<y<Y) for
plaquettes on x =const plangs, 1,  (l<x< X, 0sy<Y)
for those on y=const planes and 1-bit integers Loy
{l<x< X, 1 € y<Y)for those on z=0. See Fig. 5. Closed

FIG. 4. Key boxes in hotel counter is an example of the set P.
(Left) Key boxes and keys as ordinary view. (Right) Key boxes made of
plaquettes. We have removed plaquettes on z =constant plane except for

I=u.
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FIG. 5. Plaquette columns. Plaquettes {a} on yz-plane, (b) on zx-plane, and (c) on xy-plane. For each column, we assign an integer. For example,
{18 assigned to the column of plaquettes at (x, y) and ¢, (k) represents (k + 1)th bit of £, ..

loop L is represented by assembly of these integers
{e v M s Lx vy =1 The number of links in the x-direction
in the closed loop L, is given by

N.()= 2

€y X0y Y

||'1x,y * (2'?.7:. y) * cx, ¥ ¥ gx, v+ " >
(B.1)

with
C.‘::,O = gx, re1=0.

The number of links in the yp-direction is

N (i)= b}

OgxgX lsrysX

Héx‘ v * (25_\(, y) * C.r, » * C.\'+ | ”5
(B.2)

with

n
o

Co._rE‘:XH.y

and for the z-direction it is

N.(H= >

0gxs X0<ys Y

Hé\' v * ‘Ex, v+ 1 * ’Ix. v * TT,H- Ly H:

(B.3)

oy = Hye1,»=0

Using Eqgs. (B.1)~(B.3}, we obtain the expression for the
length of L,,

1L = N (i) + N, (i) + N.(i}. (B.4)

APPENDIX C: CALCULATION OF (i)

As shown in Section II, (i) is defined as the sum of all
the contributions from plaquette configurations whose
boundary is the closed loop L ;,

@(i)= Y

{Ssuchthatds = L;}

MmN

(C.1)
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Let us consider the “cube variable” &(c) that is the product
of six plaquette variables around a cube ¢,

a(cy= ] o,.

pede

(C2)

If we recognize o, as a product of the link variables, then
g(c)= 1. That is, #{c} is an elementary closed surface. Let C
be the set of V5 cubes and C, be a subset of C:

CE {601 Cly o CV]— 1 }?

C,cC,  0<ig2"-1 (C4)

Correspondence between a subset ¢ and an integer 7 is
defined as

{1 if ¢,eC,

qa, =

=0 if C

1 cn é ? (C,S)

i=y a,2".

Then C,; generates the /th closed surface,
&(C= [ e (C.6)

ce O

Translation of cube configuration i to plaquette configura-
tion #; introduced in Appendix A is straightforward.

Now, caiculate the function (i) for a given closed loop
i={&¢ . M, L.}, considered in Appendix B. Let us
introduce  Z-bit integers o, , {1<x<X, 1<y<Y)
(Fig. 6). Assembly of {w, .} =w defines a cube configura-

FIG. 6. Cube columns. Integer w, , is assigned to the column of cubes
at (x, y). @, (k) represents (k + 1}th bit of &, .
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tion or a closed surface. Fix the integers « and i. Then the
number of the plaquette in the xy direction S, is

S & ml w)= >

Ig€xgXlgsysY

s,y %@y, % 20, ).

(C.7)

Those in yz direction and xz are

S_t‘:(és r’s Cs (D) = Z ”wx,y * éx‘ ¥ * CI)X_*__ t, p 1!,
DX, 1€y Y
(C8)
with
mO,_v=wX+],_1-=0 (Cg)
and
S:(:(Cs ", é‘s CU) = z wa‘ ¥ * . v *W, 4 ”’
lgxsX0<ysY
(C.10)
with
W o=W, ys1=0. (C.11)

Adding all the contributions from «, we obtain the
expression for @,

u(S'“"" Syt Sl { w0} (C.lz)

&= X

Oy 5291

APPENDIX D: PROPERTIES OF THE
FOURIER TRANSFORMATION

In this section, all integers are restricted to the M-bit
integer, 0 < integer <€ 2% — 1, The Fourier transform matrix
defined by Eq. (2.22) is

Fy= (=1 (D.1)
. The self-inversion property (Eq. (2.24)) is
(F2), ;=Y (= 1)lliekll+lik=l
) k
= Y (— 1)tk et
Oskg2M
=25, ;. (D.2)
Thus,
1 o
(F’l)f.jf*zm (=Dl (D.3)
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We diagonalize the potential term (Eqs. (2.25)-(2.26)):
(I)i,jE (F@F_l)f,j

=2LMZ(71)|HMH|(P(k*l)(‘(])”fojn' (D.4)
kJ

Let m=k=*/, then [=k=*m Change the summation
variables &, { to k, m; then

qaz’,j=2_lﬁ Z (_ l)lli-kll (‘D(m)(__ 1 )Illktm)-ﬂl

k.m

_ (ZLMZ (_wl)k-(i-j)l)(z (—1)tmeal q,(m))

.

=38,,8), (D.5)

where ¢, = {(Fp),.

The fast Fourier transformation (FFT ) in this algorithm is
exactly the same as the FFT algorithm in “ordinary Fourier
transformation.” Fourier transformation f of f'is defined as

Fy=X (=17 fix). (D.6)
Using a binary expression of x and p,
x=x024 X274 - xy2M 70 D7)

p=p2’+p 2+ pa o 2Y

the Fourier transformation (DD.6) is rewritten as bit-by-bit
sums:

Fpo. Pros Par_1)

DI

xg Xy xu—1=0.1

X (= 1)¥PL L (= M- pv-

1)or0

Xf(XO’ Ky ey xM—l)‘
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The above can be calculated by the recursion equation,

Fivi(pos s Pi—1 Pr s Xkats o Xgy_1)
———

(k + L)thhbit

— Z (_ I)Pk-‘fk

xp=0,1

XFk(pCl:---spk—l’ Xi :xk+11---’ xM—l)’

(k + 1 }hbit
(D.9)
with initial condition

FO(XO’ X5 ooy xM—l)Ef(x(h Xy s xM—l)- (Dlo)

Then the M th function is the Fourier transformed function

(Do Prs oo Pag— 1) = Fag( Doy Pry s Pag 1) (D:11)

The cost to perform the mapping is M 2* steps.
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